1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- from PyQt5.QtCore import QChildEvent, QThread # 引入多线程,设备是多个,一个设备一个任务
- import cv2
- import numpy as np
- # from cv2 import VideoCapture
- # 1.定义信号
- from PyQt5.QtCore import pyqtSignal
- class CameraDev(QThread ):
- # 定义一个信号
- signal_video = pyqtSignal(bytes,int,int,int) # 信号传递的数据(图像的二进制数据,字节序列(bytes),图像的高度,宽度,通道数(int))
- def __init__(self):
- super(CameraDev,self).__init__()
- #开始视频抓取的任务初始化
- #初始化摄像头
- self.camera = cv2.VideoCapture(0,cv2.CAP_DSHOW)
- # 摄像头编号从0开始 视频的处理调用DirectX 3D(DirectShow)
- self.isOver = False
-
-
- def run(self):
- # kernel = np.array([ # 深度学习就是找到一个kernel是的特征对分类有效
- # [1,0,-1],
- # [2,0,-2],
- # [1,0,-1]
- # ])
- # 设备线程的任务,run结束,则任务结束
- while not self.isOver:
- # 循环抓取视频帧
- # print("视频处理")
- status,img = self.camera.read()
- if status:
- # print(img.shape)
- # 显示图像
- # 调用人工智能模块,进行图像识别
- # img = cv2.GaussianBlur(img, (3,3), 1.0) # 被处理图像, 高斯模糊算子的大小
- img = cv2.filter2D(img,-1,kernel,delta=200.0)
- # 2.发送信号
- self.signal_video.emit(img.tobytes(),img.shape[0],img.shape[1],img.shape[2])
-
-
-
- QThread.usleep(100000) #10000000微秒 = 1s
- # self.camera.close() #关闭摄像头
- # self.camera.release() #释放设备
- def close(self):
- # 释放设备
- self.camera.release()
- # 关闭线程,停止多任务
- self.isOver = True
- while self.isRunning():
- pass
- print("线程终止")
- self.camera.release()
- print("设备释放")
-
-
|