spidermanYT há 1 ano atrás
pai
commit
5f0bdf547c
3 ficheiros alterados com 201 adições e 0 exclusões
  1. 52 0
      day06/lenet/ds.py
  2. 149 0
      day06/lenet/model.py
  3. 0 0
      day06/lenet/train.py

+ 52 - 0
day06/lenet/ds.py

@@ -0,0 +1,52 @@
+from torchvision.datasets import MNIST
+
+from torchvision.transforms import Compose, ToTensor
+
+import numpy as np
+
+import cv2
+# 加载数据集(如果不存在则下载)
+
+transform = Compose([ToTensor()]) # 把图像转换为float的张量
+
+ds_mnist = MNIST(root="datasets", train=True, download=True, transform=transform)
+
+
+
+# print(len(ds_mnist))
+
+
+
+# print(ds_mnist[0][0].shape)
+
+# print(type(ds_mnist))
+
+# print(ds_mnist[0][1])  # 类别
+
+
+
+# print(ds_mnist[0][0])
+
+
+
+# 把图像保存为文件
+
+for i in range(10):  
+
+    img, cls = ds_mnist[i]   # img是0-1之间float
+
+
+
+    img = img.mul(255)  # 0-255
+
+    img = img.numpy().copy()
+
+    img = img.astype(np.uint8) # 转为整数
+
+
+
+    # 转换成28 * 28 * 1的图像矩阵
+
+    img = img.transpose(1, 2, 0) # 1 * 28 * 28 -> 28 * 28 * 1
+
+    cv2.imwrite(F"{i:02d}_{cls}.jpg", img)

+ 149 - 0
day06/lenet/model.py

@@ -0,0 +1,149 @@
+from torch.nn import Module    # 扩展该类实现我们自己的深度网络模型
+
+from torch.nn import Conv2d, Linear   # 卷积运算(特征抽取),全邻接线性运算(分类器)
+
+from torch.nn.functional import relu, max_pool2d, avg_pool2d  # relu折线函数,maxpool(从数组返回一个最大值)
+
+import torch
+
+
+
+class LeNet5(Module):
+
+    # 构造器
+
+    def __init__(self, class_num=10):  # 10手写数字的分类。一共10个类别
+
+        super(LeNet5, self).__init__()
+
+        """
+
+            5层  (28 * 28 * 1)
+
+                |- 1. 卷积5 * 5 -> (28 * 28 * 6)    -(2, 2) -> (14, 14 , 6)
+
+                |- 2. 卷积5 * 5 -> (10 * 10 * 16)   -(2, 2) -> (5, 5, 16)
+
+                |- 3. 卷积5 * 5 -> (1 * 1 * 120)   
+
+                |- 4. 全连接 120 -> 84 
+
+                |- 5. 全连接 84 - 10 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)  取概率最大的下标就是识别出来的数字
+
+        """
+
+        self.conv1 = Conv2d(in_channels=1, out_channels=6,  kernel_size=5, stride=1, padding=2)
+
+        self.conv2 = Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0)
+
+        self.conv3 = Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1,padding=0)
+
+
+
+        self.fc1 = Linear(120, 84)
+
+        self.fc2 = Linear(84, 10)
+
+
+
+
+
+    # 预测函数
+
+    def forward(self, x):
+
+        """
+
+            x表述输入图像, 格式是:[NHWC]
+
+        """
+
+        y = x
+
+        # 计算预测
+
+        # 第一层网络
+
+        y = self.conv1(y)  # (28*28*1) -> (28*28*6)
+
+        y = max_pool2d(y, (2, 2))  # (28*28*6) -> (14*14*6)
+
+        y = relu(y)        # 过滤负值(所有的负值设置为0)
+
+
+
+        # 第二层
+
+        y = self.conv2(y)   # (14*14*6) -> (10*10*16)
+
+        y = max_pool2d(y, (2, 2))   # (10*10*16) -> (5*5*16)
+
+        y = relu(y)         # 过滤负值
+
+
+
+        # 第三层
+
+        y = self.conv3(y)   # (5*5*16) -> (1*1*120)
+
+
+
+        # 把y从(1*1*120) -> (120)向量
+
+        y = y.view(-1, 120)  
+
+
+
+        # 第四层
+
+        y = self.fc1(y)
+
+        y = relu(y)
+
+
+
+        # 第五层
+
+        y = self.fc2(y)
+
+        # y = relu(y)        # 这个激活函数已经没有意义
+
+
+
+        # 把向量的分量全部转换0-1之间的值(概率)     
+
+        y = torch.softmax(y, dim=1) 
+
+
+
+        return y
+
+
+
+
+
+# print(__name__)
+
+if __name__ == "__main__":  # 表示是独立执行册程序块
+
+    # 下面代码被调用,则执行不到。
+
+    img = torch.randint(0, 256, (1, 1, 28, 28))  # 构造一个随机矩阵 == 噪音图像[NCHW]
+
+    img = img.float()    # 神经网络输入的必须是float类型
+
+    net = LeNet5()
+
+    y = net(img)
+
+    # y = net.forward(img)  # 等价于y = net(img)
+
+
+
+    # 判定最大下标
+
+    cls = torch.argmax(y, dim=1)
+
+    print(F"识别的结果是:{cls.numpy()[0]}")
+
+    print(y)

+ 0 - 0
day06/lenet/train.py