Răsfoiți Sursa

删除 'lenet5.py'

root1 1 an în urmă
părinte
comite
1102fd762c
1 a modificat fișierele cu 0 adăugiri și 58 ștergeri
  1. 0 58
      lenet5.py

+ 0 - 58
lenet5.py

@@ -1,58 +0,0 @@
-from torch.nn import Module
-from torch.nn import Conv2d, Linear
-from torch.nn.functional import relu, max_pool2d
-import torch
-import torch.nn as nn
-class Lenet5(Module):
-    def __init__(self):
-        super(Lenet5, self).__init__()
-        # 第一层卷积层,输入通道为1,输出通道为6,卷积核大小为5
-        self.conv1 = nn.Conv2d(1, 6, kernel_size=5)
-        # 最大池化层,池化核大小为2,步长为2
-        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
-        # 第二层卷积层,输入通道为6,输出通道为16,卷积核大小为5
-        self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
-        # 全连接层,输入节点数为16*4*4,输出节点数为120
-        self.fc1 = nn.Linear(16 * 4 * 4, 120)
-        # 全连接层,输入节点数为120,输出节点数为84
-        self.fc2 = nn.Linear(120, 84)
-        # 输出层,输入节点数为84,输出节点数为10
-        self.fc3 = nn.Linear(84, 10)
-
-    def forward(self, x):
-        # 第一层卷积,通过relu激活函数
-        x = self.pool(relu(self.conv1(x)))
-        # 第二层卷积,通过relu激活函数
-        x = self.pool(relu(self.conv2(x)))
-        # 展开张量,将其变成一维向量
-        x = x.view(-1, 16 * 4 * 4)
-        # 全连接层,通过relu激活函数
-        x = relu(self.fc1(x))
-        # 全连接层,通过relu激活函数
-        x = relu(self.fc2(x))
-        # 输出层,不使用激活函数
-        x = self.fc3(x)
-        return x
-
-
-
-# # 加载训练数据和测试数据
-# transform = transforms.Compose([
-#     transforms.ToTensor(),  # 转换为Tensor对象
-#     transforms.Normalize((0.5,), (0.5,))  # 归一化处理
-# ])
-# trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
-# trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
-# testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
-# testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
-#
-# # 实例化LeNet-5模型和损失函数、优化器
-# net = LeNet5()
-# criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
-# optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)  # 随机梯度下降优化器
-#
-# # 训练网络
-# for epoch in range(10):
-#     running_loss = 0.0
-#     for i, data in enumerate(trainloader, 0):
-#         inputs, labels = data