|
@@ -1,813 +0,0 @@
|
|
-{
|
|
|
|
- "cells": [
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 1,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "你好 Python\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "print('你好 Python')"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 1,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "test\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "print('test')"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 4,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "0\n",
|
|
|
|
- "1\n",
|
|
|
|
- "2\n",
|
|
|
|
- "3\n",
|
|
|
|
- "4\n",
|
|
|
|
- "5\n",
|
|
|
|
- "6\n",
|
|
|
|
- "7\n",
|
|
|
|
- "8\n",
|
|
|
|
- "9\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "for i in range(10):\n",
|
|
|
|
- " print(i)"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 5,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "x = 3.14"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "markdown",
|
|
|
|
- "metadata": {},
|
|
|
|
- "source": [
|
|
|
|
- "# 一级标题\n",
|
|
|
|
- "## 二级标题\n",
|
|
|
|
- "### 三级标题"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "markdown",
|
|
|
|
- "metadata": {},
|
|
|
|
- "source": [
|
|
|
|
- "# 魔法命令"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "markdown",
|
|
|
|
- "metadata": {},
|
|
|
|
- "source": [
|
|
|
|
- "## %run"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 2,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "大家好,很高兴认识你\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%run ./My_Test.py"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "markdown",
|
|
|
|
- "metadata": {},
|
|
|
|
- "source": [
|
|
|
|
- "## %load"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": null,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "# %load ./My_Test.py\n",
|
|
|
|
- "print('大家好,很高兴认识你')\n",
|
|
|
|
- "\n",
|
|
|
|
- "def my_print(x):\n",
|
|
|
|
- "\tprint(x*2)"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 11,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "Python好,大家好\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "my_print('Python好,大家好')"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 9,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "大家好,很高兴认识你\n",
|
|
|
|
- "xixi\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "from My_Test import my_print\n",
|
|
|
|
- "my_print('xixi')"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 12,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "大家好,很高兴认识你\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "# notebook对同一个文件只会导入一次\n",
|
|
|
|
- "%run ./My_Test.py"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 13,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "Python好,大家好Python好,大家好\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "my_print('Python好,大家好')"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "markdown",
|
|
|
|
- "metadata": {},
|
|
|
|
- "source": [
|
|
|
|
- "# %timeit"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 4,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "415 µs ± 16.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%timeit li = [i**2 for i in range(1000)]"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 5,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "469 ms ± 21.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%timeit li = [i**2 for i in range(1000000)]"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 16,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "5.44 µs ± 421 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%timeit li = [i**2 for i in range(10)]"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 17,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "# %timeit 后面只跟一句代码\n",
|
|
|
|
- "# 测试代码块 用%%timit"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 20,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "742 µs ± 71.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%%timeit\n",
|
|
|
|
- "li = []\n",
|
|
|
|
- "for i in range(1000):\n",
|
|
|
|
- " li.append(i**2)\n",
|
|
|
|
- "# 在python中使用列表生成式比for高效 "
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "markdown",
|
|
|
|
- "metadata": {},
|
|
|
|
- "source": [
|
|
|
|
- "## %time"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 21,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "# %time 只会测量一次代码的执行时间"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 22,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "CPU times: user 662 µs, sys: 2 µs, total: 664 µs\n",
|
|
|
|
- "Wall time: 678 µs\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%time li = [i**2 for i in range(1000)]"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 23,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "CPU times: user 953 µs, sys: 60 µs, total: 1.01 ms\n",
|
|
|
|
- "Wall time: 1.23 ms\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%%time\n",
|
|
|
|
- "li = []\n",
|
|
|
|
- "for i in range(1000):\n",
|
|
|
|
- " li.append(i**2)"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 24,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "3.18 ms ± 403 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "import random\n",
|
|
|
|
- "li = [random.random() for i in range(100000)]\n",
|
|
|
|
- "%timeit li.sort()"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 25,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "CPU times: user 27.1 ms, sys: 2.68 ms, total: 29.8 ms\n",
|
|
|
|
- "Wall time: 31 ms\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "li = [random.random() for i in range(100000)]\n",
|
|
|
|
- "%time li.sort()"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 26,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "CPU times: user 3.61 ms, sys: 133 µs, total: 3.74 ms\n",
|
|
|
|
- "Wall time: 4.09 ms\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%time li.sort()"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 27,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "CPU times: user 3.3 ms, sys: 14 µs, total: 3.31 ms\n",
|
|
|
|
- "Wall time: 3.4 ms\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%time li.sort()"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 28,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "CPU times: user 4.06 ms, sys: 137 µs, total: 4.19 ms\n",
|
|
|
|
- "Wall time: 4.28 ms\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%time li.sort()"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "markdown",
|
|
|
|
- "metadata": {},
|
|
|
|
- "source": [
|
|
|
|
- "## %%html"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 31,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "data": {
|
|
|
|
- "text/html": [
|
|
|
|
- "<div class='mytest' style='color:red'>html content</div>"
|
|
|
|
- ],
|
|
|
|
- "text/plain": [
|
|
|
|
- "<IPython.core.display.HTML object>"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "display_data"
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%%html\n",
|
|
|
|
- "<div class='mytest' style='color:red'>html content</div>"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "markdown",
|
|
|
|
- "metadata": {},
|
|
|
|
- "source": [
|
|
|
|
- "## %%js"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 32,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "data": {
|
|
|
|
- "application/javascript": [
|
|
|
|
- "document.querySelector('.mytest').innerHTML='我成功了'"
|
|
|
|
- ],
|
|
|
|
- "text/plain": [
|
|
|
|
- "<IPython.core.display.Javascript object>"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "display_data"
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%%js\n",
|
|
|
|
- "document.querySelector('.mytest').innerHTML='我成功了'"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "markdown",
|
|
|
|
- "metadata": {},
|
|
|
|
- "source": [
|
|
|
|
- "## %%writefile "
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 34,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "name": "stdout",
|
|
|
|
- "output_type": "stream",
|
|
|
|
- "text": [
|
|
|
|
- "Writing haha.py\n"
|
|
|
|
- ]
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "%%writefile haha.py\n",
|
|
|
|
- "import random\n",
|
|
|
|
- "li = [random.random() for i in range(100000)]\n",
|
|
|
|
- "%timeit li.sort()\n"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "markdown",
|
|
|
|
- "metadata": {},
|
|
|
|
- "source": [
|
|
|
|
- "## numpy"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 2,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "import numpy as np"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 3,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "data": {
|
|
|
|
- "text/plain": [
|
|
|
|
- "numpy.ndarray"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "execution_count": 3,
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "execute_result"
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "a = np.array([1, 2, 3])\n",
|
|
|
|
- "type(a)"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 4,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "data": {
|
|
|
|
- "text/plain": [
|
|
|
|
- "(3,)"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "execution_count": 4,
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "execute_result"
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "a.shape"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 5,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "b = np.array([[1,2,3],\n",
|
|
|
|
- " [4,5,6]]) "
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 6,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "data": {
|
|
|
|
- "text/plain": [
|
|
|
|
- "(2, 3)"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "execution_count": 6,
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "execute_result"
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "b.shape"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 10,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "a = np.zeros((5,5,4)) "
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 11,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "data": {
|
|
|
|
- "text/plain": [
|
|
|
|
- "array([[[0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.]],\n",
|
|
|
|
- "\n",
|
|
|
|
- " [[0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.]],\n",
|
|
|
|
- "\n",
|
|
|
|
- " [[0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.]],\n",
|
|
|
|
- "\n",
|
|
|
|
- " [[0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.]],\n",
|
|
|
|
- "\n",
|
|
|
|
- " [[0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.],\n",
|
|
|
|
- " [0., 0., 0., 0.]]])"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "execution_count": 11,
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "execute_result"
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "a"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 12,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 13,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "data": {
|
|
|
|
- "text/plain": [
|
|
|
|
- "array([[ 1, 2, 3, 4],\n",
|
|
|
|
- " [ 5, 6, 7, 8],\n",
|
|
|
|
- " [ 9, 10, 11, 12]])"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "execution_count": 13,
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "execute_result"
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "a"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 14,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "b = a[:2, 1:3]"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 15,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "data": {
|
|
|
|
- "text/plain": [
|
|
|
|
- "array([[2, 3],\n",
|
|
|
|
- " [6, 7]])"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "execution_count": 15,
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "execute_result"
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "b"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 16,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": [
|
|
|
|
- "x = np.array([[1,2],[3,4]], dtype=np.float64)\n",
|
|
|
|
- "y = np.array([[5,6],[7,8]], dtype=np.float64)"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 17,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "data": {
|
|
|
|
- "text/plain": [
|
|
|
|
- "array([[ 6., 8.],\n",
|
|
|
|
- " [10., 12.]])"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "execution_count": 17,
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "execute_result"
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "x + y"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": 18,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [
|
|
|
|
- {
|
|
|
|
- "data": {
|
|
|
|
- "text/plain": [
|
|
|
|
- "array([[ 6., 8.],\n",
|
|
|
|
- " [10., 12.]])"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- "execution_count": 18,
|
|
|
|
- "metadata": {},
|
|
|
|
- "output_type": "execute_result"
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "source": [
|
|
|
|
- "np.add(x, y)"
|
|
|
|
- ]
|
|
|
|
- },
|
|
|
|
- {
|
|
|
|
- "cell_type": "code",
|
|
|
|
- "execution_count": null,
|
|
|
|
- "metadata": {},
|
|
|
|
- "outputs": [],
|
|
|
|
- "source": []
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "metadata": {
|
|
|
|
- "kernelspec": {
|
|
|
|
- "display_name": "Python 3 (ipykernel)",
|
|
|
|
- "language": "python",
|
|
|
|
- "name": "python3"
|
|
|
|
- },
|
|
|
|
- "language_info": {
|
|
|
|
- "codemirror_mode": {
|
|
|
|
- "name": "ipython",
|
|
|
|
- "version": 3
|
|
|
|
- },
|
|
|
|
- "file_extension": ".py",
|
|
|
|
- "mimetype": "text/x-python",
|
|
|
|
- "name": "python",
|
|
|
|
- "nbconvert_exporter": "python",
|
|
|
|
- "pygments_lexer": "ipython3",
|
|
|
|
- "version": "3.11.3"
|
|
|
|
- }
|
|
|
|
- },
|
|
|
|
- "nbformat": 4,
|
|
|
|
- "nbformat_minor": 2
|
|
|
|
-}
|
|
|