Browse Source

上传文件至 '20200404207范利丰'

fanlifeng 1 năm trước cách đây
mục cha
commit
7bcc34e55a

+ 813 - 0
20200404207范利丰/Jupyter_test.ipynb

@@ -0,0 +1,813 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "你好 Python\n"
+     ]
+    }
+   ],
+   "source": [
+    "print('你好 Python')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "test\n"
+     ]
+    }
+   ],
+   "source": [
+    "print('test')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0\n",
+      "1\n",
+      "2\n",
+      "3\n",
+      "4\n",
+      "5\n",
+      "6\n",
+      "7\n",
+      "8\n",
+      "9\n"
+     ]
+    }
+   ],
+   "source": [
+    "for i in range(10):\n",
+    "    print(i)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "x = 3.14"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# 一级标题\n",
+    "## 二级标题\n",
+    "### 三级标题"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# 魔法命令"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## %run"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "大家好,很高兴认识你\n"
+     ]
+    }
+   ],
+   "source": [
+    "%run ./My_Test.py"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## %load"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# %load ./My_Test.py\n",
+    "print('大家好,很高兴认识你')\n",
+    "\n",
+    "def my_print(x):\n",
+    "\tprint(x*2)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Python好,大家好\n"
+     ]
+    }
+   ],
+   "source": [
+    "my_print('Python好,大家好')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "大家好,很高兴认识你\n",
+      "xixi\n"
+     ]
+    }
+   ],
+   "source": [
+    "from My_Test import my_print\n",
+    "my_print('xixi')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "大家好,很高兴认识你\n"
+     ]
+    }
+   ],
+   "source": [
+    "# notebook对同一个文件只会导入一次\n",
+    "%run ./My_Test.py"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Python好,大家好Python好,大家好\n"
+     ]
+    }
+   ],
+   "source": [
+    "my_print('Python好,大家好')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# %timeit"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "415 µs ± 16.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
+     ]
+    }
+   ],
+   "source": [
+    "%timeit li = [i**2 for i in range(1000)]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "469 ms ± 21.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
+     ]
+    }
+   ],
+   "source": [
+    "%timeit li = [i**2 for i in range(1000000)]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "5.44 µs ± 421 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n"
+     ]
+    }
+   ],
+   "source": [
+    "%timeit li = [i**2 for i in range(10)]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# %timeit 后面只跟一句代码\n",
+    "# 测试代码块 用%%timit"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "742 µs ± 71.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
+     ]
+    }
+   ],
+   "source": [
+    "%%timeit\n",
+    "li = []\n",
+    "for i in range(1000):\n",
+    "    li.append(i**2)\n",
+    "# 在python中使用列表生成式比for高效    "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## %time"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# %time 只会测量一次代码的执行时间"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "CPU times: user 662 µs, sys: 2 µs, total: 664 µs\n",
+      "Wall time: 678 µs\n"
+     ]
+    }
+   ],
+   "source": [
+    "%time li = [i**2 for i in range(1000)]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "CPU times: user 953 µs, sys: 60 µs, total: 1.01 ms\n",
+      "Wall time: 1.23 ms\n"
+     ]
+    }
+   ],
+   "source": [
+    "%%time\n",
+    "li = []\n",
+    "for i in range(1000):\n",
+    "    li.append(i**2)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "3.18 ms ± 403 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
+     ]
+    }
+   ],
+   "source": [
+    "import random\n",
+    "li = [random.random() for i in range(100000)]\n",
+    "%timeit li.sort()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "CPU times: user 27.1 ms, sys: 2.68 ms, total: 29.8 ms\n",
+      "Wall time: 31 ms\n"
+     ]
+    }
+   ],
+   "source": [
+    "li = [random.random() for i in range(100000)]\n",
+    "%time li.sort()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "CPU times: user 3.61 ms, sys: 133 µs, total: 3.74 ms\n",
+      "Wall time: 4.09 ms\n"
+     ]
+    }
+   ],
+   "source": [
+    "%time li.sort()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "CPU times: user 3.3 ms, sys: 14 µs, total: 3.31 ms\n",
+      "Wall time: 3.4 ms\n"
+     ]
+    }
+   ],
+   "source": [
+    "%time li.sort()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "CPU times: user 4.06 ms, sys: 137 µs, total: 4.19 ms\n",
+      "Wall time: 4.28 ms\n"
+     ]
+    }
+   ],
+   "source": [
+    "%time li.sort()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## %%html"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 31,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div class='mytest' style='color:red'>html content</div>"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "%%html\n",
+    "<div class='mytest' style='color:red'>html content</div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## %%js"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 32,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "document.querySelector('.mytest').innerHTML='我成功了'"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "%%js\n",
+    "document.querySelector('.mytest').innerHTML='我成功了'"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## %%writefile "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 34,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Writing haha.py\n"
+     ]
+    }
+   ],
+   "source": [
+    "%%writefile haha.py\n",
+    "import random\n",
+    "li = [random.random() for i in range(100000)]\n",
+    "%timeit li.sort()\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## numpy"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "numpy.ndarray"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "a = np.array([1, 2, 3])\n",
+    "type(a)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(3,)"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "a.shape"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "b = np.array([[1,2,3],\n",
+    "              [4,5,6]]) "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(2, 3)"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "b.shape"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "a = np.zeros((5,5,4)) "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[[0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.]],\n",
+       "\n",
+       "       [[0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.]],\n",
+       "\n",
+       "       [[0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.]],\n",
+       "\n",
+       "       [[0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.]],\n",
+       "\n",
+       "       [[0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.],\n",
+       "        [0., 0., 0., 0.]]])"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "a"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[ 1,  2,  3,  4],\n",
+       "       [ 5,  6,  7,  8],\n",
+       "       [ 9, 10, 11, 12]])"
+      ]
+     },
+     "execution_count": 13,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "a"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "b = a[:2, 1:3]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[2, 3],\n",
+       "       [6, 7]])"
+      ]
+     },
+     "execution_count": 15,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "b"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "x = np.array([[1,2],[3,4]], dtype=np.float64)\n",
+    "y = np.array([[5,6],[7,8]], dtype=np.float64)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[ 6.,  8.],\n",
+       "       [10., 12.]])"
+      ]
+     },
+     "execution_count": 17,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "x + y"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[ 6.,  8.],\n",
+       "       [10., 12.]])"
+      ]
+     },
+     "execution_count": 18,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "np.add(x, y)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.3"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}

BIN
20200404207范利丰/每日收获.docx